
CS636: Parallel Prefix Scan
Swarnendu Biswas

Semester 2018-2019-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

sum_arr = f(arr)

20-Jan-19 Swarnendu Biswas 2

int arr[8] = {10, 1, 4, 2, 9, 5, 7, 8}

int sum_arr[8] = {10, 11, 15, 17, 26, 31, 38, 46}

Definition of Inclusive Prefix Scan

20-Jan-19 Swarnendu Biswas 3

[x0, x1, x2, …, xn-1] ⊕

[x0, (x0 ⊕ x1), (x0 ⊕ x1 ⊕ x2), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)]

array of n
elements

binary associative
operator

Exclusive Prefix Scan

20-Jan-19 Swarnendu Biswas 5

[x0, x1, x2, …, xn-1] ⊕

[I, x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-2)]

Identity
I

A Problem

• Assume we have a 100-inch sandwich to feed ten people

• We know how many inches each person wants

• How do we cut the sandwich quickly and distribute?

• Method 1: Cut the sandwich sequentially starting from say left

20-Jan-19 Swarnendu Biswas 6

3, 5, 2, 7, 28, 4, 3, 0, 8, 1

Yong Cao. Parallel Prefix Sum – Scan, ECE 408/498AL, UIUC.

Method 2

• Calculate prefix sum and cut in parallel

20-Jan-19 Swarnendu Biswas 7

3, 8, 10, 17, 45, 49, 52, 52, 60, 61

Prefix Sum

• Inclusive Sum

• Exclusive Sum

20-Jan-19 Swarnendu Biswas 8

𝑂𝑢𝑡𝑝𝑢𝑡𝑖 = σ𝑗=0
𝑖 𝑎𝑟𝑟𝑗

𝑂𝑢𝑡𝑝𝑢𝑡 0 = 0 ⋀ 𝑂𝑢𝑡𝑝𝑢𝑡𝑖 = σ𝑗=0
𝑖−1 𝑎𝑟𝑟𝑗 , 𝑖 > 0

Sequential Inclusive Prefix Sum

20-Jan-19 Swarnendu Biswas 9

output[0] = arr[0]
for (int i = 1; i < n; i++) {

output[i] = output[i-1] + arr[i];
}

Work done?
Span?

O(n)

Analysis of Parallel Algorithms

• Tp = Execution time of a parallel program with p processors

• Work
• Total number of computation operations performed by the p processors

• Time to run on a single processor (T1)

• Span
• Length of the longest series of sequential operations or the critical path

• Time taken to run on infinite processors (T∞)

20-Jan-19 Swarnendu Biswas 10

Analysis of Parallel Algorithms

• Cost
• Total time spent by all processors in computation (pTp)

20-Jan-19 Swarnendu Biswas 11

Cost ≥ Work
pTp ≥ T1

Execution time ≥ Span
Tp ≥ T ∞

Analysis of Parallel Algorithms

• Speedup (Sp)
• Total time spent by all processors in computation (pTp)

20-Jan-19 Swarnendu Biswas 12

Speedup =
𝑇

1

𝑇
𝑝

≤ 𝑝

Speedup

20-Jan-19 Swarnendu Biswas 14

Other Metrics

• Efficiency

• Speedup per processor
𝑆

𝑝

𝑝

• Parallelism

• Maximum possible speedup given any number of processors
𝑇1

𝑇∞

20-Jan-19 Swarnendu Biswas 15

Sequential Inclusive Prefix Scan

20-Jan-19 Swarnendu Biswas 16

output[0] = arr[0]
for (int i = 1; i < n; i++) {

output[i] = output[i-1] + arr[i];
}

Work = O(n)

Span = O(n)

Asymptotic

complexity O(n)

Parallel Prefix Sum

CS636 Swarnendu Biswas 17

How can Inclusive Prefix Scan be Parallelized?

20-Jan-19 Swarnendu Biswas 18

output[0] = arr[0]
for (int i = 1; i < n; i++) {

output[i] = output[i-1] + arr[i];
}

loop-carried
dependence

A Naïve Parallel Prefix Sum

• Use one thread to compute each output element
• The thread adds up all the previous elements needed for the output

• Work

20-Jan-19 Swarnendu Biswas 19

y0 = x0
y1 = x0 + x1
y2 = x0 + x1 + x2
…

= 1 + 2 + 3 + … + 𝑛 =
𝑛 𝑛 + 1

2
= O (𝑛2) operations

Parallel Inclusive Prefix Sum

20-Jan-19 Swarnendu Biswas 20

10 1 4 2 9 5 7 8

threads: p
(here p == n, and n = 8)

Ok, so what now?

20-Jan-19 Swarnendu Biswas 21

10 1 4 2 9 5 7 8

10 11 5 6 11 14 12 15

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕Iteration 1,
Distance 1

20-Jan-19 Swarnendu Biswas 22

10 1 4 2 9 5 7 8

10 11 5 6 11 14 12 15

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

10 11 15 17 16 20 23 29

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Iteration 1,
Distance 1

Iteration 2,
Distance 2

20-Jan-19 Swarnendu Biswas 23

10 1 4 2 9 5 7 8

10 11 5 6 11 14 12 15

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

10 11 15 17 16 20 23 29

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

10 11 15 17 26 31 38 46

⊕ ⊕ ⊕ ⊕

Iteration 1,
Distance 1

Iteration 2,
Distance 2

Iteration 3,
Distance 4

Algorithm Efficiency

• # of iterations: log n

• First iteration: (n-1) additions

• Second iteration: (n-2) additions

• Third iteration: (n-4) additions

• Last iteration: (n – n/2) additions

• Total additions = 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 4 + … + 𝑛 −
𝑛

2

20-Jan-19 Swarnendu Biswas 24

= 𝑛 log 𝑛 − 1 + 2 + 4 + ⋯ +
n

2
= 𝑛 log 𝑛 − (𝑛 − 1) = O (𝑛 log 𝑛)

Algorithm Efficiency

• Work = O (𝑛 log 𝑛)

• Remember Work for the sequential algorithm was O(n)

• For large 𝑛, log 𝑛 can be a non-trivial factor

20-Jan-19 Swarnendu Biswas 25

for i = 0 to ⌈log n-1⌉ do
for j = 2i to n-1 in parallel do

A [j] = A[j] + A[j-2i]

Hillis and Steele

Asymptotic

complexity O(log n)

Algorithm With Improved Work-Efficiency

20-Jan-19 Swarnendu Biswas 29

10 1 4 2 9 5 7 8

Guy Blelloch

20-Jan-19 Swarnendu Biswas 30

1 810 4 2 9 5 7

611 14 15

2917

46
Binary tree

sum(n) = sum(n.lc) + sum(n.rc)

20-Jan-19 Swarnendu Biswas 31

1 810 4 2 9 5 7

611 14 15

2917

46
Binary tree

sum(n) = sum(n.lc) + sum(n.rc)

for i = 0 to log n-1 do
for j = 0 to n-1 by 2i+1 in parallel do

a[j+2i+1-1] = a[j+2i-1] + a[j+2i+1-1]

20-Jan-19 Swarnendu Biswas 32

10 1 4 2 9 5 7 8

10 11 4 6 9 14 7 15

10 11 4 17 9 14 7 29

10 11 4 17 9 14 7 46

i=0

i=1

i=2

20-Jan-19 Swarnendu Biswas 33

1 810 4 2 9 5 7

611 14 15

2917

46At the end of
the first round

20-Jan-19 Swarnendu Biswas 34

1 810 4 2 9 5 7

611 14 15

2917

0

20-Jan-19 Swarnendu Biswas 35

1 810 4 2 9 5 7

611 14 15

170

0

20-Jan-19 Swarnendu Biswas 36

10 380 11 15 17 26 31

110 17 31

170

0

20-Jan-19 Swarnendu Biswas 37

10 380 11 15 17 26 31

110 17 31

170

0

for i = log n-1 down to 0 do
for j = 0 to n-1 by 2i+1 in parallel do

tmp = a[j+2i-1]
a[j+2i-1] = a[j+2i+1-1]
a[j+2i+1-1] = temp + a[j+2i+1-1]

20-Jan-19 Swarnendu Biswas 38

10 11 4 17 9 14 7 0

i=2

i=1

i=0 10 11 4 0 9 14 7 17

10 0 4 11 9 17 7 31

0 10 11 15 17 26 31 38

20-Jan-19 Swarnendu Biswas 39

10 380 11 15 17 26 31

110 17 31

170

0After second round

Algorithm Efficiency

20-Jan-19 Swarnendu Biswas 40

Asymptotic

complexity O(log n)

for i = 0 to log n-1 do
for j = 0 to n-1 by 2i+1 in parallel do

a[j+2i+1-1] = a[j+2i-1] + a[j+2i+1-1]

for i = log n-1 down to 0 do
for j = 0 to n-1 by 2i+1 in parallel do

tmp = a[j+2i-1]
a[j+2i-1] = a[j+2i+1-1]
a[j+2i+1-1] = temp + a[j+2i+1-1]

Algorithm Efficiency

• # of iterations: log n in each pass

• Number of addition operations in first pass:
𝑛

2
+

𝑛

4
+ ⋯ + 2 + 1

• Number of addition operations in second pass: 1 + 2 + ⋯ +
𝑛

2

• Total additions = n − 1 + n − 1 = 𝟐(n − 1)

20-Jan-19 Swarnendu Biswas 41

= O (𝑛)

Benefits from parallelism can overcome the
constant factor increase in computation

References

• Yong Cao. Parallel Prefix Sum – Scan.

• G. Blelloch. Prefix Sums and Their Applications.

• Th. Ottmann. Parallel Prefix Computation.

20-Jan-19 Swarnendu Biswas 42

