CS636: Parallel Prefix Scan

Swarnendu Biswas

Semester 2018-2019-II
CSE, IIT Kanpur
sum_arr = f(arr)
int $\operatorname{arr}[8]=\{10,1,4,2,9,5,7,8\}$
int sum_arr[8] $=\{10,11,15,17,26,31,38,46\}$

Definition of Inclusive Prefix Scan

Exclusive Prefix Scan

$\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}\right]$

$$
\left[I, \mathrm{x}_{0}, \quad\left(\mathrm{x}_{0} \oplus \mathrm{x}_{1}\right), \ldots,\left(\mathrm{x}_{0} \oplus \mathrm{x}_{1} \oplus \ldots \oplus \mathrm{x}_{n-2}\right)\right]
$$

A Problem

- Assume we have a 100 -inch sandwich to feed ten people
- We know how many inches each person wants

$$
3,5,2,7,28,4,3,0,8,1
$$

- How do we cut the sandwich quickly and distribute?
- Method 1: Cut the sandwich sequentially starting from say left

Method 2

- Calculate prefix sum and cut in parallel

$$
3,8,10,17,45,49,52,52,60,61
$$

Prefix Sum

- Inclusive Sum

$$
\text { Output }_{i}=\sum_{j=0}^{i} a r r_{j}
$$

- Exclusive Sum

$$
\text { Output }[0]=0 \wedge \text { Output }_{i}=\sum_{j=0}^{i-1} \operatorname{arr}_{j}, i>0
$$

Sequential Inclusive Prefix Sum

Analysis of Parallel Algorithms

- $T_{p}=$ Execution time of a parallel program with p processors
- Work
- Total number of computation operations performed by the p processors
- Time to run on a single processor $\left(T_{1}\right)$
- Span
- Length of the longest series of sequential operations or the critical path
- Time taken to run on infinite processors (T_{∞})

Analysis of Parallel Algorithms

- Cost
- Total time spent by all processors in computation ($\mathrm{p} \mathrm{T}_{\mathrm{p}}$)

> Cost \geq Work $p T_{p} \geq \mathrm{T}_{1}$

> Execution time \geq Span $$
T_{p} \geq T_{\infty}
$$

Analysis of Parallel Algorithms

- Speedup (S_{p})
- Total time spent by all processors in computation ($\mathrm{p} \mathrm{T}_{\mathrm{p}}$)

$$
\text { Speedup }=\frac{T_{1}}{T_{p}} \leq p
$$

Speedup

Other Metrics

- Efficiency
- Speedup per processor $\frac{S_{p}}{p}$
- Parallelism
- Maximum possible speedup given any number of processors $\frac{T_{1}}{T_{\infty}}$

Sequential Inclusive Prefix Scan

$$
\begin{aligned}
& \text { output[0]=arr[0] } \\
& \text { for (int } i=1 ; i<n ; i++)\{ \\
& \text { output[i] }=\operatorname{output}[i-1]+\operatorname{arr}[i] ; \\
& \begin{array}{l}
\text { Work }=O(n) \\
\text { Span }=O(n)
\end{array}
\end{aligned}
$$

Parallel Prefix Sum

How can Inclusive Prefix Scan be Parallelized?

A Naïve Parallel Prefix Sum

- Use one thread to compute each output element
- The thread adds up all the previous elements needed for the output

$$
\begin{aligned}
& y_{0}=x_{0} \\
& y_{1}=x_{0}+x_{1} \\
& y_{2}=x_{0}+x_{1}+x_{2}
\end{aligned}
$$

- Work $=1+2+3+\ldots+n=\frac{n(n+1)}{2}$

$$
=\mathrm{O}\left(n^{2}\right) \text { operations }
$$

Parallel Inclusive Prefix Sum

10	1	4	2	9	5	7	8
	$-\bigoplus \bigoplus \bigoplus \bigoplus \bigoplus \bigoplus \emptyset$						
10	11	5	6	11	14	12	15
10	11	15	17	16	20	23	29
$\begin{array}{\|} \text { Iteration 3, } \\ \text { Distance 4 } \\ \hline \end{array}$							
10	11	15	17	26	31	38	46

Algorithm Efficiency

- \# of iterations: $\log \mathrm{n}$
- First iteration: ($\mathrm{n}-1$) additions
- Second iteration: ($\mathrm{n}-2$) additions
- Third iteration: ($n-4$) additions
- Last iteration: $(\mathrm{n}-\mathrm{n} / 2)$ additions
- Total additions $=(n-1)+(n-2)+(n-4)+\ldots+\left(n-\frac{n}{2}\right)$

$$
\begin{aligned}
& =n \log n-\left(1+2+4+\cdots+\frac{\mathrm{n}}{2}\right) \\
& =n \log n-(n-1)=\mathrm{O}(n \log n)
\end{aligned}
$$

Algorithm Efficiency

- Work $=\mathbf{O}(n \log n)$
- Remember Work for the sequential algorithm was $\mathrm{O}(\mathrm{n})$
- For large $n, \log n$ can be a non-trivial factor
for $i=0$ to $\lceil\log n-1\rceil$ do for $j=2^{i}$ to $n-1$ in parallel do $A[j]=A[j]+A\left[j-2^{i}\right]$

Algorithm With Improved Work-Efficiency

10	1	4	2	9	5	7	8

20-Jan-19

Algorithm Efficiency

Algorithm Efficiency

- \# of iterations: $\log \mathrm{n}$ in each pass
- Number of addition operations in first pass: $\frac{n}{2}+\frac{n}{4}+\cdots+2+1$
- Number of addition operations in second pass: $1+2+\cdots+\frac{n}{2}$
- Total additions $=(n-1)+(n-1)=2(n-1)$

$$
=\mathrm{O}(n)
$$

Benefits from parallelism can overcome the constant factor increase in computation

References

- Yong Cao. Parallel Prefix Sum - Scan.
- G. Blelloch. Prefix Sums and Their Applications.
- Th. Ottmann. Parallel Prefix Computation.

