CS636: Parallel Prefix Scan

Swarnendu Biswas

Semester 2018-2019-II
CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

sum arr = f(arr)

(

.

int arr([8] = {10, 1, 4, 2, 9, 5, 7, 8}

(

.

int sum arr[8] = {10, 11, 15, 17, 26, 31, 38, 46}

\

J

Definition of Inclusive Prefix Scan

operator

binary associativeJ

AR
1/

[[X@r X1y KXoy ey Xn—l]J

array of n
elements

r

.

[Xg, (Xg ®X1), (Xg DX, D Xy)y vy (XgBX, B .. ®X,)]

~\

J

Exclusive Prefix Scan

[[x@, X1p Xop wey Xo_ql J D Iﬁ IdentityJ

[Ir X@r (X@ @Xl)r e 9 (XQ@Xl@m@XnQ)]

A Problem

* Assume we have a 100-inch sandwich to feed ten people
* We know how many inches each person wants

[3, 5 2,7, 28, 4, 3, 0, 8, 1]

* How do we cut the sandwich quickly and distribute?

* Method 1: Cut the sandwich sequentially starting from say left

Yong Cao. Parallel Prefix Sum — Scan, ECE 408/498AL, UIUC.

Method 2

 Calculate prefix sum and cut in parallel

[3, 3, 10, 17, 45, 49, 52, 52, 00, 61]

Prefix Sum

* Inclusive Sum

Output; = Zﬁ':o arr;

* Exclusive Sum

Output|0] =0 A Output; = ;l-;%, arr;, i >0

Sequential Inclusive Prefix Sum

output[0] = arr[0]

for (int 1 = 1; 1 < n; i++) {
output[i] = output[i-1] + arr[i];

}

Span?

[:VVoﬂ<done? ()(n) J

Analysis of Parallel Algorithms

* T, = Execution time of a parallel program with p processors
* Work

* Total number of computation operations performed by the p processors
* Time to run on a single processor (T,)

* Span
* Length of the longest series of sequential operations or the critical path
* Time taken to run on infinite processors (T.,)

Analysis of Parallel Algorithms

* Cost

* Total time spent by all processors in computation (pr)

(

Cost = Work
pTl, =T,

\

(

Execution time = Span
L=

\

Analysis of Parallel Algorithms

* Speedup (S,)

* Total time spent by all processors in computation (pr)

4)

Speedup = T—1S D

. J

Speedup

20-Jan-19

Speedup

Superlinear

Sublinear

Processors

Swarnendu Biswas

14

Other Metrics

* Efficiency
S
e Speedup per processor 792

e Parallelism

Ty

* Maximum possible speedup given any number of processors —

0.0)

Sequential Inclusive Prefix Scan

N

output[0] = arr[0] Asymptotic

for (int 1 = 1; i < n; i++) { complexity O(n)
output[1] = output[i-A] + arr[i]; g

}

~
Work = O(n)

g Span = O(n) ,

Parallel Prefix Sum

How can Inclusive Prefix Scan be Parallelized?

output[0] = arr[0]
for (int 1 = 1; 1 < n; i++) {
output[i] = output[i-1] + arr[il;
o

}
0

loop-carried
dependence

A Naive Parallel Prefix Sum

* Use one thread to compute each output element
* The thread adds up all the previous elements needed for the output

Yo = Xp
Vi = Xp T X4
Vo, = Xo + Xq + X,

nn+1)

eWork =14+24+3+4+ ...+ n= >

= O (n?) operations

Parallel Inclusive Prefix Sum

threads: p
(here p == n, and n = 8§)

20-Jan-19 Swarnendu Biswas 20

Iteration 1,
Distance 1

|

10 1 9 5 / 3
D D P b B
10 11 11 14 12 15

o P 3 |-P+
~ P+ S =P Q
n P I P S
NFNPENP
~N P o P
4ev5l@vﬁ
@ ot o
o2 — 2

in,%

Ilteration 1
Distance 1

[r

lteration 2
Distance 2

[

[

Iteration 1,
Distance 1

[

Iteration 2,
Distance 2

[

Iteration 3,
Distance 4

TR

10 1 4 2 9 5 7 3
| @& & o o 9 & &
10 11 5 6 11 14 12 15
| | & & ¢ ¢ ¢ ¢
10 11 15 17 16 20 23 29
LT T ¢ ¢ ¢ ¢
10 11 15 17 26 31 38 46

Algorithm Efficiency

 # of iterations: log n

* First iteration: (n-1) additions

* Second iteration: (n-2) additions
* Third iteration: (n-4) additions

e Last iteration: (n — n/2) additions

* Total additions=(n—-1)+(n—-2)+(n—4)+ ..+ (n — g)

=nlogn —(1+2+4+---+g)

=nlogn —(n—1) =0 (nlogn)

Algorithm Efficiency

* Work = O (nlogn)

« Remember Work for the sequential algorithm was O(n)
* For large n, logn can be a non-trivial factor %nd Steele]

to [log n-1]| do

-

-

Asymptotic
complexity O(log n)

[3

!
]

1 to n-1 in parallel do
= A[j] + A[j-21]

Algorithm With Improved Work-Efficiency

[Guy Bleﬂé:j

10 1 4 2 9 5 7/ 3

Binary tree @
ksum(n) = sum(n.lc) + sum(n.rc)

Binary tree @
ksum(n) = sum(n.lc) + sum(n.rc)

‘I:l') 1 4 2 9 5 7 ('I:I’

for 1 = 0 to log n-1 do
for j = @ to n-1 by 2*1 in parallel do
alj+2+*1-1] = a[j+2+-1] + a[j+23+1-1]

46

29

14

15

14

17

14

17

11

10

11

10

11

10

A A A

10

=0

32

Bi

Swarne

20-Jan-19

()
At the end of @

the first round
_ y,

for 1 = log n-1 down to 0@ do
for j = @ to n-1 by 2*1 in parallel do

tmp = al[j+21-1]
alj+21-1] = a[j+21+1-1]

0 ' alj+21*1-1] = temp + al[j+21+1-1]
N N N N

=0

I
(WY

1=2

20-Jan-19

10 11 4 17 9 14 7/ 0
10 11 4 0 9 14 7 17
10 0 4 11 9 17 7/ 31

10

17

31

38

[)
After second round °

. J

Algorithm Efficiency

-

-

Asymptotic
complexity O(log n)

for 1 = @ to log n-1 do
for j = 0 to n-1 by 2'+1 in parallel do
alj+2+*1-1] = a[j+21-1] + al[j+21+1-1]
for 1 = log n-1 down to 0 do
for j = 0 to n-1 by 2*1 in parallel do

tmp = a[j+21-1]
alj+21-1] = a[j+21+1-1]
a[j+21*1-1] = temp + a[j+21*1-1]

Algorithm Efficiency

* # of iterations: log n in each pass

* Number of addition operations in first pass: g + % +--+24+1

* Number of addition operations in second pass: 1 + 2 + --- +§
* Total additions=(n—1)+ (n—1) =2(n—1)
=0 (n)

Benefits from parallelism can overcome the
constant factor increase in computation

References

* Yong Cao. Parallel Prefix Sum — Scan.
* @G. Blelloch. Prefix Sums and Their Applications.

e Th. Ottmann. Parallel Prefix Computation.

